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ABSTRACT

m mass flow
An analytical model is proposed to calculate the

three-dimensional axisymmetric turbulent flowfield in M Mach number
9a radial vaneless diffuser. The model assumes that

the radial and tangential boundary layer profiles can n exponent in tangential velocity profile
be approximated by power law profiles. Then, using the

.. integrated radial and tangential momentum and continu- p pressure
g' ity equations for the boundary layer and corresponding

inviscid equations for the core flow, there results six PSTD standard pressure, 101325 N/in
ordinary differential equation in six unknowns wnich
can easily be solved using a Runge-Kutta technique. A r radius
model is also proposed for fully developed flow. The
results using this technique have been compared with r- rthe results from a three-dimensional viscous, axisym- R dimensionless radial distance, r3 r
metric duct code and with experimental data and good 2

" L'o"quantitative 

agreement 
was obtained. R gas constant

NOMENCLATURE g

Re Reynold's numbera speed of sound

A area s entropy

s streamline distance

Cf skin friction coefficient
T temperature

c specific heat ratio at constant pressure
P P TSTD standard temperature, 288.2 K

. Cpr pressure coefficient, p- - v velocity

y coordinate normal to the wall
SF entrainment function

Y dimensionless y-distance, y/h
* *h diffuser half-width

flow angle from radial direction

H shape factor, y specific heat ratio1 62
" boundary layer thickness

H2  shape factor, -6 / v
61r displacement thickness, - dy

m exponent in radial velocity profile \



weaknesses. First of all, the development of the end-
i• s displacement thickness, 1- dy wall boundary layers is not accounted for except

e through the inclusion of an effective channel height
term. This generally leads to an overprediction of the

" v v static pressure rise unless an unrealistically highJ r dr friction factor is used. Secondly, the method gives62r momentum thickness, n - y o information about the velocity profiles and flow
0 re re angle distribution at the exit of the vaneless dif-

fuser. This information would be helpful in the design
A of the leading edge of the diffuser vanes. Finally,
Sv( v~d the choice of an appropriate friction factor and the

a2s momentum thickness, - dy effective passage height distribution are totallye" es arbitrary and will often vary from one machine to

another.
coefficient of viscosity More recently, several investigators (4-6) have

attempted to calculate the three-dimensional-boundary
density layers in vaneless diffusers. The major drawback of

these methods is the empiricism used in the specifica-
shear stress tion of the velocity profiles. This affects the cal-

culation of the boundary layer shape factor and
f dT therefore also the skin friction and the location ofentropy function, cp T possible separation points.

Currently, there are computer codes (7) which can
Subscripts: calculate the three-dimensional flow fields in annular

ducts. These codes can also be used for calculating
c centerline the flow field in a radial vaneless diffuser but their

running times and complexity preclude their use as
cr critical design tools. Also, in the case of the ADD code (7),

there are stringent Mach number and Reynold's number
I IF e edge of boundary layer limitations.

In the present paper, a three-dimensional axisym-
r radial direction metric calculation p -ocedure for turbulent flows in a

radial vaneless diffuser is presented. The method is
R reference condition a noniterative integral method and is therefore much

faster than finite difference methods. The primary
s streamwise direction assumption made is that both the axial and tangential

boundary layer velocity profiles can be described by
w wall power laws; however, the exponents in these power laws

are allowed to vary with radius as prescribed by the
y direction normal to the wall equations of motion. Compressibility is accounted for

in the radial direction but not in the direction normal
0 tangential direction to the end-walls. Turbulent flow is assumed everywhere

using the semi-empirical Ludwieg-Tillman relation for
1 compressor inlet skin-friction. A method for calculating fully-developed flows is also presented. Comparisons are

2 vaneless diffuser inlet made to results from the ADD code for both the boundary
layer analysis and for the fully developed flow analy-

3 vaneless diffuser exit sis. Comparisons are also made with experimental data
in the literature. In all cases, good agreement is

Superscripts: demonstrated.

total conditions ANALYSIS

() mass-averaged conditions The type of vaneless diffuser geometry considered
by this method of analysis is shown in Fig. 1. Typical

INTRODUCTION velocity profiles for the cases of boundary layer flow
and fully developed flow are shown in Figs. 2(a) and

The flowfield in the radial vaneless diffuser of a (b).
centrifugal compressor is extremely complex since the
flow is turbulent, unsteady, viscous, and three- Boundary La er Flow
dimensional. Also, depending on the initial state of The following assumptions are made for this analy-
the end-wall boundary layers and the diffuser length, sis:
the flow may become fully developed (i.e., the end-wall (1) The flow is steady and turbulent everywhere.
boundary layers may merge in the center of the channel) (2) The fluid is a perfect gas.
or may separate off one of the walls. One of the ear- (3) The flow is axisymmetric.
liest attempts to calculate this flowfield was due to (4) The end-walls of the vaneless diffuser are
Stanitz (1). Other investigators have used a similar adiabatic.
approach to calculate the frictional losses in the (5) There is no density variation in the direction
vaneless diffuser (2,3). In Stanitz' model, the flow normal to the vaneless diffuser end-walls although the
is assumed to be on-imensional with the losses density is allowed to vary in the radial direction,
accounted for by using a shear force term proportional i.e., p =p(r).
to an assigned friction factor in the radial and tan- (6) The vaneless diffuser geometry and flow are
gential momentum equations. This approach has several symmetric about the diffuser centerline.
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(7) The boundary layer velocity profiles in the dVee Vee
radial and tangential directions may be described by - (10)
the power law equations

v' v n From the boundary layer assumption, which is inherentVr .e1)nin Eq. (5), the static pressure is constant across the

Vre Vee ( channel and thus is a function of radius only.
The remaining three equations are obtained from

where vriv Vee, a, m, and n are functions of channel continuity, the energy equation, and the equa-

radius onuy. tion of state. Channel continuity can be written

The boundary layer equations of motion in cylin-
drical coordinates for axisymmetric turbulent flow are
as follows: m = 2pv re(2wr)(h - 61r) (11)

Continuity where for a power law profile

iiii m

a(vr) Pvr  + j(fi) 0  (2) '1r = 17m m
ar r ay

Differentiating Eq. (11) with respect to the radius
Radial Momentum yields an expression for dvre/dr. If the total tem-

perature is assumed to be constant in the vaneless

S=2 av Bi Tr diffuser, which is true if there are no inlet normalar ve +y r 1 ap +_1_r (3) gradients of total temperature, the energy equation for

V r r +y ay p ar p ay the core flow can be written
Tangential Momentum 2

V
Te  T' e (12)

v v+Ve v ve 'To e 2c
vr + r Vy ay p ay (4)

The final equation which completes the system is the
equation of state for the core flow which is

y-Momertum

.p p = pRg ,e (13)
• • ayp (5)

One additional equation is needed to solve this
If the power law profiles of Eq. (1) are assumed, system since an additional unknown is added in the
fthe p o er laweprofil of eq. ( ae asue integration of Eqs. (2) to (4); i.e., the normal veloc-

the problem reduces to that of determining the free ity at the edge of the boundary layer, vye. This can
stream velocity components vre and vee; the be modelled using Head's entrainment relation which
boundary layer thickness, a; the boundary layer profile emrclledicts tra e t which

,"r..- expnens, andn; nd he reestrem termdynmic empirically predicts the rate at which fluid from the
exponents, m and n; and the free stream thermodynamic free stream is entrained into the boundary layer. Head
properties, p, , and Te. Thus eight equations areshwdtateenrimtrtecnbmoledsa'• 'requ red oopletely solve the flow field. Three of showed that the entrainment rate can be modelled as a
required to comp te y tego tied Thre o function only of a boundary layer shape factor. Sumner
these equations are obtained by integrating Eqs. (2) to and Shanebrook (8) extended the definition to three-
(4) through the boundary layer which results in the dimensional compressible flow as follows
following

a dy + vdY + a a(6) F Ves- v y e  = 0.0306 (H1 - 3 (14)

ar dy r a ~P~d y = v6 e T ye 3 0

Finally, expressions for the wall shearing stresses

2 v 2 can be given by
ra y +a altvr d, 2 2 day ar d- v r)dYpvr c

" rw cos ae 7 (15)

, - - rw (7)
ar rw O2

a a(ova(pVV) a 2oVv re tan cf (16)
. dy + ay dy + 8 dy = - T ewe

0 where cf is given by the Ludwieg-Tillman relation
(8) which is

Equations (3,4) can also be evaluated for the - -
isentropic core flow. This results in the following cf = 0.246 Re -0.268 'T  -1.561 H 2 (17)
two equations e

dp dV re ve2
Pyre -dF

- + P F (9)
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Using the velocity profiles from Eq. (1) and per- v r m v n
forming the indicated differentiations and integra- = ; 2 = (22)

tions, Eqs. (6) to (8) and (11) can be combined to rc ec
yield the following equations

where V , V h, m, and n are functions of radius
2 dv r e  only. (3 Analagous to fully developed, turbulent,2m(1 + 2m) ' pipe flow theory (10), the shear stress is assumed to
re) re vary linearly across the channel.

For fully developed flow, an isentropic core flow2  + no longer exists. Therefore Eqs. (9) and (10) are no
ee 1 dh longer valid. However, with the assumption of a linear

rvariation of shear stress across the channel, Eqs. (3)
and (4) can be evaluated along the channel centerline

m [ nl + 2m) 2 c (1 + 2m) which yields the equations 2
+ 2m(l + 2m) 6 n s f-- m o e d~rdr ~ c w(3

lTml+2) r 4scsel dv 2v
=c - p rc + e (rwh

- 2m
2  F 

(18)

h cos 0 e dv vw(

2(24)

dm [ 2dv re 2n(1 +2m) tan c'ed m = m ( l + m ) ( l + 2 m ) _ _ + 2 + 2
U m m 2 - Tr- + TI--2n r where Trv and T w are given by Eqs. (15) and (16)

re and cf is given ly Eq. (17) with

cf(1 + 2m) FHoF(19) 12 -1

e ej 2r H2(H 2 + I )

dV M2  +1 If the continuity equation is integrated across the

-r= - (1 - M2  1 -. re + ee vaneless diffuser half-width, the following equation
Tre_ re--_T;- rreutr reslt

6 dm (1 + m)F (h+ -- + (20)d
cos C e 0) orvrdy = 0 (25)

dn n dm + (1 + m + n) 2 [..c nF
dn n mF CSo- e  

2  - ( +m +-n) (21) For the power law profiles of Eq. (22), this becomes

Equations (9), (10), and (18) to (21) can then be 1 + 1 dp + 1 dvrc + 1 dh 1 dm (26)
solved sequentially for the six unknowns (vre, m, a, n, T +  -- Vrc +77 - 0 (-6)
p, and Ve) using a fourth order Runge-Kutta tech-
nique such as that described in Ref. (9). Equation The radial momentum equation, Eq. (3), can also be
(18) is good only for symmetric vaneless diffusers with integrated across the diffuser half-width. This be-
moderate wall curvatures and uniform core flows. How- comes, after using the results from Eqs. (23) and (26)
ever, Eqs. (9), (10), and (19) to (21) are good for and the velocity profiles from Eq. (22)
nonuniform core conditions and could be solved together
with the equations describing the core flow as an [ v
interactive boundary layer problem. The above system dm + m)(1 + 2m) 1 rc - + 1 m)n
of equations is also good for incompressible flow if = 2m(1 r
the Mach numbers, Mre and Mee, are set equal to [ rc
zero in Eqs. (18) and (20). (27)

A complete derivation of the final form of the con-
tinuity equation is described in the Appendix. The When the tangential momentum equation is integrated
radial and tangential momentum equations are derived across the diffuser half-width, the following equation
similarly, results

Fully Developed Flow dn n dm + (m + n)(1 + m + n) cf
The system of equations described in the previous r= c-s- ac (28)

section for boundary layer flow breaks down when the (
boundary layers on the two end-walls meet in the center
of the channel, i.e., when 6 > h. In this case, the The density variation in the throughflow direction
flow is said to be fully developed and the velocity can be obtained from a combination of the equation of
profiles are assumed to be as shown in Fig. 2(b). state and the energy equation. Then, using the above

The following assumptions are made for fully devel- relations, the following equation for the variation of
oped flow in addition to those already made for bound- the centerline radial velocity component results.
ary layer flow. (1) The boundary layer equations,
Eqs. (2) to (5), remain valid for fully developed flow.
(2) The velocity profiles can be described by the power
law equations

4
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d M dv + 1 meridional velocity component in the impeller. How-
, 2 -) + 2m(l + 2m Vrc ec 1 dh ever, & will probably be a significant portion of the

1(1-rc) ) r r r impeller exit half-width.
If the compressor mass flow is specified, the core

2flow radial velocity component can then be calculated
+ 2m) 2 tan c from Eq. (11). However, the core flow tangential

+velocity component and corresponding velocity profile
1+2n r - Mc rJ 2h cos ac exponent are more difficult to determine. A boundary

layer analysis of the impeller would give values for
(29) the relative tangential velocity component and its

Equation (29) together with Eqs. (23), (24), (27), corresponding exponent. However, as the fluid moves
and (28) then forms a system of five ordinary differen- from the relative frame of reference of the impeller
tial equations in five unknowns (vrc, vec, m, n, (assuming a shrouded impeller) to the absolute frame
and p) which can be solved using a fourth-order Runge- of the vaneless diffuser, a large shear occurs on the
Kutta technique. fluid as it attempts to decelerate from a velocity near

the wheel speed to zero near the end-walls. Thus it is
Separated Flow impossible to model the velocity profile in this region

By examining Eqs. (19) and (27), it can be seen by a power law. Experimental data does show, however,
that the radial velocity profile exponent, m, and that a velocity profile that can be approximated by a
therefore also the shape factor, H2 , will increase power law is quickly established. Experimental data
rapidly if there is a large rate of deceleration or if also shows (4) that an exponent of n 0.1 adequately

the flow angle becomes large. This usually means that describes the tangential boundary layer at the vaneless
flow separation is imminent. A large deceleration rate diffuser inlet. The core flow tangential velocity com-

* is caused by a rapid increase in flow area. A large ponent can then be obtained from a conservation of tan-
flow angle can be the result of the impeller design but gential momentum analysis. In any event, the initial
will more often be the result of a low mass flow rate values of the exponents, m and n, do not have a large
through the compressor. In the latter case, a large effect on the final solution.
flow separation may occur in the vaneless space which For the case of fully developed flow entering the
could precipitate compressor stall and subsequent surge vaneless diffuser, the same variables must be specified
of the system. as for the boundary layer case with the exception of

The methods outlined in the previous two sections the boundary layer thickness (which is equal to the
for boundary layer flow, and fully developed flow, diffuser half-width, h). For this case, the value of
could be used to calculate through a separated region as in Eq. (30) should also include the additional core
of the flow. However, if this were done, large values flow loss due to a nonzero shear stress gradient at the
of the velocity profile exponent, m, would be calcu- centerline. The values of the other variables are then
lated which would result in unrealistic velocity pro- calculated in the same way as for boundary layer flow.
files. A possible way of treating this problem would
be to assume a constant value for the exponent, m, Loss Calculation
after separation. Separation could be determined by The loss in a vaneless diffuser can be expressed
examining the shape factor, H2 , or the skin friction most easily and most rigorously by an increase in the
coefficient, cf. The problem could then be treated mass-averaged entropy of the fluid. The mass-averaged
in the inverse mode using either Eq. (19) for boundary entropy at a specified radius in the vaneless diffuser

layer flow or Eq. (27) for fully developed flow to can be expressed
determine the variation of free-stream radial velocity.
However, since power law profiles cannot describe neg-
ative velocities which occur when the flow separates, 2P O (S - S2e) Vr21rr)dy

it would probably be necessary to use some other formu- -s=-0 2e r=(31)
lation for the separated flow problem. l\ m

Initial Conditions where the local entropy is given by
In order to solve Eqs. (9), (10), and (18) to (21)

for boundary layer flow, initial values for the six T
variables (p, , vre, vee, m, and n) must be 2e
specified. The value of the static pressure can be s = C In (32)
obtained from experimental data or from an analysis of - 2e P 7Y
the impeller flowfield. In the latter case, the pres- P7
sure could be obtained from the equation

*- i - as The entropy rise through the diffuser can then be

expressed
p =p e g (30)

The entropy rise, as, in Eq. (30) should include the (s3 - 2) (5 --52e) - (5 - --e) (33)

entropy rise due to the mixing of the impeller blade
surface, boundary layers, wakes, and any other losses

which are assumed to affect the impeller core flow. where the values of (s s2&2 and (s - s2e)
The values of 6 and m can only be obtained from are obtained by a numerical integration of Eq. 32)

an analysis of the impeller end-wall boundary layers. across the boundary layer. Since the total temperature

Ordinarily the value of m should be on the order of in the vaneless diffuser is assumed to be constant
0.2 or 0.3 if there is no great deceleration of the everywhere, the mass-averaged total pressure ratio can

be expressed

%. 5
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ordinary differential equations. The continuity equa- (I 2 1 + M2
tion will serve as an example of how this is done. 1 d6 + - re) dVre + e 1 dm

Also, the continuity equation shows how the entrainment -T v 3 r 1 -r
function is used in the derivation. If Leibnitz' rule re

is used to interchange differentiation and integration, 1 + m F
Eq. (6) becomes 96 cos)

e

1 d 6  
1 A V i 1 da - Using similar techniques, the radial and tangential

V re F Vye momentum equations can also be reduced to ordinary

Tvr Tr) _d FJ red r e
re 0 0 r / differential equations.

(35) The entrainment function, F, is given by Eq. (14).

The term on the right hand side of Eq. (35) is Head's The shape factor, H1, is defined by the expression

entrainment function, F, and will be evaluated later. 6 - 61S
Since the density is assumed to be a function of radius H1 _ (40)
only, it comes out of the integral and the integrals 2S
can be evaluated for the power law profiles of Eq. (1)
which results in the following equation De Ruyck and Hirsch (11) approximated this using the

radial velocity components in the definitions of 61
1 dd + 1 dvre +1 dp + 1 1 dm F(l+m) and 62, thus

w-T I+ m -r - cos
re Tr re (36) Hi I (41)

This is the form desired except for the density term. H 2r

The density variation can be expressed in terms of the
pressure variation for the isentropic core flow as Although Deruyck and Hirsch stated that Eq. (41) is
follows good only for small angles, a, Davis (6) shows that the

radial thicknesses, 6 1r and 6?r, are-the proper
dp 1 dp (37) thicknesses to use in the definition of H1  for use
-F=-- d 3F in the entrainment function. Using the power law pro-

a files of Eq. (1) in the definition of 6 1r and 62r,

Combining this with Eq. (9) then yields the shape factor, H1, then becomes

2  
H

2  
+ 2m (42)

1 dp rre re ee (38)m

drF v re F -r-- 38) and finally the entrainment function, F, becomes

The final form of the continuity equation then becomes 0.653
F 0.0306.1  ) (43)
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TABLE I. - FIVE TEST CASES FOR COMPARISON OF ANALYSIS

TO RESULTS FROM THE ADD CODE

[Parallel wall diffusers -r 2 = 8.049 cm, r3/r2
1.1605, h/r2 = 0.03329, 1'/TSTD = 1.]

Inlet conditions

Case a/h m n P/PSTD Vre/Vcr Voc/Vcr Oe

I 0.2400 0.2 0.2 0.7087 0.7498 0 0
II .2400 .2 .2 .9172 .2705 0.2705 45
Ill .9556 .2 .2 .9172 .2705 .2705 45
IV .2400 .2 .2 .7009 .2603 .7151 70
V .9556 .2 .2 .7009 .2603 .7151 70

TABLE I. - TWO TEST CASES FOR COMPARISON WITH DATA FROM
REFERENCE 4

[Parallel wall diffusers - r 17.64 cm, r3/r2 =
1.377, h/r2 = 0.0605, TTSTD = 1.]

Inlet conditions

Case 6/h m n P/PSTD Vre, Vee, ae
m/sec m/sec

VI 0.288 0.2 0.1 1 6.83 7.19 46.5
VII .360 .5 .2 1 6.35 15.24 67.4
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